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Standing radial cross-waves? 
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Standing radial cross-waves in an annular wave tank are investigated using 
Whitham’s average-Lagrangian method. For the simplest case, in which a single 
radial cross-wave is excited, energy is transferred from the wavemaker to the cross- 
wave through the spatial mean motion of the free surface, as described by Garrett 
(1970) for a purely transverse cross-wave in a rectangular tank. I n  addition, energy 
is transferred through spatial coupling since, in contrast to the purely transverse 
cross-wave in the rectangular tank, the (non-axisymmetric) radial cross-wave is 
three-dimensional. It is shown in an Appendix that this spatial coupling does occur 
for a three-dimensional cross-wave in a rectangular tank. The equations that govern 
this single-mode resonance are isomorphic to  those that govern the Faraday 
resonance of surface waves in a basin of fluid subjected to  vertical excitation (Miles 
1984 a). 

It is found that the second-order Stokes-wave expansion for deep-water, standing 
gravity waves, which is regular for rectangular containers, may become singular for 
circular containers (Mack (1962) noted these resonances for finite-depth, standing 
gravity waves in circular containers). The evolution equations that govern two 
distinct types of resonant behaviour are derived : (i) 2 : 1 resonance between a radial 
cross-wave and a resonantly forces axisymmetric wave, corresponding to  ap- 
proximate equality among the driving frequency, a natural frequency of the directly 
forced wave, and twice the natural frequency of a cross-wave; (ii) 2: 1 internal 
resonance between a radial cross-wave and a non-axisymmetric second harmonic, 
corresponding to  approximate equality among the driving frequency, the natural 
frequency of a non-axisymmetric wave of even azimuthal wavenumber, and twice 
the natural frc.quency of the cross-wave. The axisymmetric, directly forced wave in 
(i) is resonantly excited and exchanges energy with the subharmonic cross-wave 
through spatial coupling, whereas the cross-wave in (ii) is parametrically excited and 
exchanges energy with the non-axisymmetric second harmonic through spatial 
coupling. The equations governing case (i) are shown to exhibit chaotic motions; 
those governing (ii) are shown to be isomorphic to  the equations governing 2:  1 
internal resonance in the Faraday problem (Miles 1984a, $6), which have been shown 
to exhibit chaotic motions (Gu & Sethna 1987). 

Preliminary experiments on standing radial cross-waves are reported in an 
Appendix, and theoretical predictions of mode stability are in qualitative agreement 
with these experiments. For the single-mode theory, the interaction coefficient that 
is a measure of the energy exchange between the wavemaker and the cross-wave is 
evaluated numerically for a particular wavemaker. The maximum interaction 

t With an Appendix by Janet M. Becker and Diane M. Henderson. 
1 Present address: School of Mathematics, The University of New South Wales, Kensington, 

NSW 2033, Australia. 
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coefficient for a fixed azimuthal wavenumber of the cross-wave typically occurs for 
that  radial mode number for which the turning point of the cross-wave radial profile 
is nearest the wavemaker. The present experiments for standing radial cross-waves 
are compared with those of Tatsuno, Inoue & Okabe (1969) for progressive radial 
cross-waves. 

1. Introduction 
We consider here standing, radial cross-waves in an annular wave tank. Cross- 

waves emanate from a symmetry-breaking instability that may occur when surface 
waves of finite amplitude are excited by a wavemaker. They have crests 
perpendicular to, and frequency half that of, the wavemaker. In  1831 Faraday (see 
Martin 1932) observed the excitation of cross-waves by a vibrating plate and of 
radial cross-waves by a vibrating cork (see Miles & Henderson (1990) for a 
discussion). A symmetric (independent of the cross-channel coordinate) wavemaker 
oscillating in a rectangular wave tank is related to Faraday's vibrating-plate 
experiment. Garrett (1970), Miles (1988, hereinafter referred to as I) and Tsai, Yue 
& Yip (1990) have studied the excitation of a purely transverse cross-wave by a 
symmetric wavemaker in a short (length x breadth) rectangular tank. The more 
difficult problem of progressive cross-waves in a long (length 9 breadth) rectangular 
tank has been studied by Mahony (1972), Jones (1984), Lichter & Chen (1987) and 
Miles & Becker (1988). Radial cross-waves in an annular wave tank, which are 
related to Faraday's vibrating-cork experiment, do not appear to have been 
previously studied. 

We examine the excitation of gravity waves of free-surface displacement 6 in an 
annular wave tank of inner radius rl,  outer radius rz and depth d by the wavemaker 
displacement 

r = r , + ~  = rl+uf(z)sin2wt (0 < 0 < 271, -d  < z < 6) ,  (1.1) 

on the assumptions that 

k,,a = E 6 1, k,,d 9 1,  kum(rZ-r l )  = 0 ( 1 ) ,  (1.2a-c) 

where k,, is the wavenumber of the radial cross-wave defined by 

J:(k,, r2 )  Y:(k,, r l )  - J:(k,, rl)  Y:(k,, r2)  = 0 (v = 1,2, . . . , m = 0 , 1 , 2 , .  . .), 
( 1 . 3 ~ )  

and J,/Y, are Bessel functions of order v of the firstlsecond kind. An axisymmetric 
wave is directly forced by the wavemaker. In addition, when w approximates a 
natural frequency of a radial cross-wave, 

wvrn = (qkvrn)', (1.3b) 

nonlinear coupling may transfer energy from the wavemaker to the cross-wave. We 
first assume that w approximates w,, according to 

w2 - w;, - - I - - = = ( € )  kvm (2). w2 K 

which fixes the bandwidth of the resonance. 
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We pose the free surface displacement of the radial cross-wave in the form 

where p+iq is a dimensionless, slowly varying, complex amplitude and Nu is a 
normalization coefficient. We then use Whitham's average-Lagrangian method to  
obtain the evolution equations that govern ( p ,  q). These equations are isomorphic to 
those in I $5.  

Radial cross-waves resemble cross-waves in a rectangular wave tank, but there are 
significant differences. The first difference may be elucidated by considering how 
energy is transferred from the wavemaker to the cross-wave. As noted by Garrett 
(1970), the dominant mechanism by which energy is transferred from a symmetric 
wavemaker to a purely transverse (two-dimensional) cross-wave in a rectangular 
tank is through coupling between the cross-wave and the spatially averaged motion 
of the directly forced wave. For a radial cross-wave, which is inherently three- 
dimensional, energy also is transferred through spatial coupling, which may be 
represented by an infinite sum over the axisymmetric free modes (of zero spatial 
mean) in the annulus. This spatial coupling, which is absent for a two-dimensional 
cross-wave, does occur for a three-dimensional cross-wave in a rectangular tank (see 
Appendix A). 

The second difference between cross-waves in a rectangular wave tank and radial 
cross-waves is elucidated by considering the second-order Stokes-wave expansion for 
dccp-water, standing gravity waves, which is regular for rectangular containers but 
may become singular for circular containers.? Hunt & Baddour (1980) have carried 
out this Stokes-wave expansion to second order for deep-water, standing gravity 
waves in a circular cylinder or annulus. We find that small divisors occur in their 
expansion, in consequence of which their ordering breaks down and resonances may 
occur. 

Internal resonance between a radial cross-wave and an axisymmetric second 
harmonic corresponds to approximate equality among the driving frequency, a 
natural frequency of the directly forced wave, and twice the natural frequency of the 
cross-wave. We derive the equations that govern this resonance and find that chaotic 
motions occur in some parametric domains. Since 2 : 1 internal resonance cannot 
occur for cross-waves in a rectangular wave tank, the corresponding equations must 
have higher-order nonlinearity than those for radial cross-waves, for which the 
nonlinearity is quadratic. We also consider internal resonance between a radial cross- 
wave and a non-axisymmetric second harmonic, for which the governing equations 
are isomorphic to those in Miles (1984a, $6) and have been shown to admit chaotic 
solutions (Gu & Sethna 1987). 

We begin our analysis, in $2, with the variational formulation for standing radial 
cross-waves in an annulus. We present the trial functions in $3. Here, in contrast to 
I, we develop an explicit representation for the directly forced wave rather than 
considering only its mean properties (see Appendix B). I n  $4, we obtain the average 
Lagrangian, and in $ 5  we obtain the evolution equations and quote the results of I 
$ 5  for the stability analysis. I n  $6, we consider the case when the driving frequency 
approximates both a natural frequency of the directly forced wave and twice that of 
the cross-wave. In  $7, we consider the case when the driving frequency approximates 

t These internal resonances were recognized by Mack (1962) for finite-depth, standing gravity 
waves in circular containers. 
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both the natural frequency of a non-axisymmetric wave of even azimuthal 
wavenumber and twice that of the cross-wave. We consider three-dimensional cross- 
waves in a rectangular wave tank in Appendix A. 

Two-dimensional cross-waves in a rectangular wave tank have been examined 
experimentally by Lin & Howard (1960). Garrett (1970) and Tsai et al. (1990) have 
shown agreement between the theoretical predictions of the frequency-amplitude 
relationship for the cross-waves and Lin & Howard's data. Preliminary experimental 
results on standing radial cross-waves are presented in Appendix C; our theoretical 
predictions of mode stability are in qualitative agreement with these data. The 
interaction coefficient that  is a measure of the energy exchange between the 
wavemaker and the cross-wave is evaluated numerically in Appendix C for a 
particular wavemaker. For a fixed azimuthal wavenumber, v ,  the maximum energy- 
exchange coefficient typically occurs for that  mode for which k,, % v / r l .  We 
conclude by comparing the present experimental data for standing radial cross- 
waves with those of Tatsuno, Inoue & Okabe (1969) for progressive radial cross- 
waves. A theoretical analysis for progressive radial cross-waves is currently being 
developed. 

2. Variational formulation 
The boundary-value problem that governs the velocity potential $(r,  8,z, t)  and 

the free-surface displacement [ ( T ,  8, t ) ,  for motion started from rest in an inviscid, 
incompressible fluid confined to  the annular wave tank described in $ 1  is 

V2$ = 0 (r,+X < r < r2 ,  0 < 8 < 2x, -d  < z < g), (2.1) 

$* = 6 + V $  vc, $t+t(V$)"+sC; = 0 ( z  = 51, (2.2a, b )  

#r = 0 ( r  = ~ 2 ) 7  4o Io -o  = $oI8-2n, $,z = 0 (Z = - d ) ,  (2.3 a+) 

= ~t + V$ . Vx ( r  = T I +  x), (2.4) 

where the subscripts r ,  8, z, t signify partial differentiation. The boundary condition 
( 2 . 3 ~ )  is imposed at z = - 00 (deep-water waves) in $53-7. 

Equations (2.1)-(2.4) may be deduced from the variational principle 

6 J = O ,  J E  Zdt, (2.5a, b)  I 
where J is the action integral of the Lagrangian (Luke 1967 ; Miloh 1984; I $2), 

C C C  

and the volume integral is over the domain bounded by the wavemaker (T  = rl +x), 
the free surface ( z  = c),  and the fixed boundaries ( r  = r2, 8 = 0,2x, and z = - d ) .  
Following 152,  we transform (2.6) to 
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where r , (O,t )  and z,(O,t) are the coordinates of the intersection of the wavemaker 
( r  = r ,+X)  with the free surface ( z  = 5).  

3. Trial functions 
We choose the trial functions 

(kvm W / g )  @ = ~'$1 +€($I1 + $ 0 )  + o(& (3 .1~)  

and hum 5 = ~%1+~(511+ ~ 0 )  + o(&* (3.1 b)  

Here, (@l ,  &), which represent the first-order cross-wave and satisfy the unforced 
( x  = 0 in (2.4)), linear dynamics, are given by 

@1 = Re [{q(7) - ip(7)) e-i"t]Fu(p) cos V O d ,  ( 3 . 2 ~ )  

6, = Re [ {p(7)  + iq(7)) ePiwt] Fu(p) cos uO, (3.2b) 

where u = 1,2, .  . . is the azimuthal wavenumber of the radial cross-wave (which, by 
definition is non-axisymmetric), 

p kumr ,  p1 kumrl ,  p2 kumr27 5 kumZ (3.3 a d )  

are the dimensionless radial coordinate, inner and outer cylinder radius, and vertical 
coordinate, 

7 = EWt, (3.3e) 
is a dimensionless slow time, and 

is the radial eigenfunction for the cross-wave, with Nu fixed by 

p 3 P ) P d P  = 1. (3.4b) 

($,,C,,) represent the axisymmetric, directly forced wave and are defined below in 
(3.10). 

The second-order cross-wave is given byt 

co m 

$11 = Re[!&p+iq)2e-2iwt A n F o ( p n p ) ~ ~ ~ + c o s 2 u 0  C BnF2v(ynp)eynE} 
n-0 

(3.54 

t The equivalents of (3.2), (3.5a) and (3.6) are given in Hunt & Baddour (1980). 

I6 FLM 222 
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where 
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= 1 [ ~ ] ~ ~ ~ d p F , ~ ( y , p ) P ~ ( p )  ( n  = 0,1,2, ...); (3.6~) 
2 4-yn  

(3.8a, 6) 

and the eigenvalues, p n  and y n  are fixed by 

F;(pnp2)  = 0 (n = 1,2, ...), Fiv(ynp2)  = 0 (n = 0, 1,2, ...). (3.9a, b) 

We note that p n  = konlkvrn ,  Y n  = k2vnIkvrn' (3.9 c, a) 

§§ 6-7 1. 
For the present calculation, we assume that neither pn nor y n  approximate 4 (but see 

In contrast to I, an explicit representation of the wavemaker solution ($o,co) is 
necessary for the evaluation of the integral over the free surface in (2.7). The 
modification of Havelock's (1929) solution of the wavemaker problem to ac- 
commodate standing waves is straightforward ; however, it is more convenient to 
express the solution to the linear truncations of (2.1)-(2.4) as an infinite sum of free 
modes. Physically, this representation corresponds to replacing the motion of the 
wavemaker by an equivalent mass source located a t  z = 0. Solving (2.1)-(2.4), using 
the finite Hankel transform (cf. Sneddon 1972), we obtain 

(3.10~) 

(3.10b) 

where Q 0 ( E )  and the @,,([), (n = 1,2,. . .) are given in Appendix B. We note that the 
non-uniform validity of (3.10) as r 4 r1 does not affect the following results, since (2.4) 
is applied directly in the integral over the wavemaker in (2.7) (see $4). We anticipate 
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that, in the series (3.10), only Qo(5) and @ J E )  and their derivatives, evaluated at the 
rest position of the free surface E = 0, are required: 

OO(O) = ir f(s) ds, @A(O) = 44),(0), @i(O)  = 2f(O), 
2 -03 

f(s) d n 8  ds, (3.12 a, b) 

@in(O) = A @ J O )  + 2f(OL (3.12 c) 

where, here and subsequently, primes indicate differentiation with respect to 
argument. 

(3.1 1 a+) 

@pn(O) =4--l~, @p) = 4@J0), 

4. The average Lagrangian 
We next substitute (3.1) into (2.7) and average over ot to obtain the average 

Lagrangian ( L )  as a functional of p and q. Since V2(3.1a) = 0, the volume integral 
in (2.7) vanishes, and the calculation is reduced to integrals over the free surface and 
the wavemaker. We subdivide (L) according to 

( L )  = g(F+ W+Bf+Bw) ,  (4.1) 

where 

are integrals over the rest positions of the free surface and the wavemaker, 

B, = [[:Z,rdrdO, Bw E r 1 I ,  dz do, (4.3a, b )  

are the contributions from the endpoints, 

I ,  [$(2Ct-$z+V# * vC)-gSIz-<, Zw [r&$r-VX * Vq5-2~t)-grz~~zlr-r,+X 
(4.4a, b) 

are the integrands of the free surface and wavemaker integrals, and (q5, C) are given 
by (3.1). 

We approximate the contributions from the endpoints, (4.3), by (cf. I (4.1)) 

(4.5b) 

Invoking ( 1 . 1 )  and (2.4), remarking that 

ro = rl +x(o ,  t )  +o(E~) ,  zo = C(rl, 8, t) + o(&, 
summing, and averaging, we obtain 

(B,+B,) = - Elgf(o)~<(~-$l$l i ) , in2ut-2q51~l  cos2wt)dO+O(e3). ( 4 . 6 ~ )  
e r n  

Substituting (3.2) into (4.6), we find that ( B f + B w )  = O(e3) ;  hence (4.1) reduces to 

( L )  = ; ( F + w ) + o ( E ~ ) .  (4.6b) 
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For the free-surface integral (4.2a), we replace w-l a, by w-l a, +€a,, invoke (3.2), 
(3.5) and (3.10), integrate, and average to obtain 

where F, represents that part of the free-surface integral due to the directly forced 
wave (and hence is independent of p and q ) ;  Fl represents quadratic interactions of 
the first-order cross-wave, (3.2), that are raised O(e2)  by slow modulation and 
resonant detuning , 

where, here and subsequently, the dot indicates differentiation with respect to 7, and 

(4)  = a(Pq-Pq)+i/3P(P2+q2), (4.8) 

(4.9) 

is a tuning parameter; Flo represents the interaction of the forced-wave, (3.10), with 
the cross-wave (3.2, 3.5), 

where we have invoked (3.11) and (3.12); Fll represents the self-interaction of the 
cross-wave, and 

(4.1 1 )  

We note that energy is transferred from the wavemaker to the radial cross-wave 
through the (spatial) mean motion of the free surface (cf. Garrett 1970). Additionally, 
energy is transferred via spatial coupling between the cross-wave and the directly 
forced wave. This spatial coupling is represented by an infinite sum over the 
axisymmetric free-modes (of zero spatial mean) in the annulus. We emphasize that, 
for every cross-wave in the annulus, energy is transferred from the wavemaker to the 
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cross-wave through this spatial coupling, in contrast to the two-dimensional cross- 
wave in a rectangular tank, for which this spatial coupling does not occur. This 
spatial coupling does occur for a three-dimensional cross-wave in a rectangular tank 
(see Appendix A). 

Finally, we consider the wavemaker integral (4.2b). Invoking (l.i), (3.2), (3.5) and 
(2.4) for # o , l r = r l ,  we 

where Wo represents 

obtain 

that part of W due to  the directly forced wave, and 

(4.12) 

Combining the free-surface and wavemaker integrals, we obtain 

where Lo = i(Fo+ W,) is the Lagrangian of the directly forced wave, 

is a Hamiltonian, 
H = ip (p2 + q2) + r, pq + ar2 (p2 + q2)2 

2"O 1 + ; c - [ k& f(s) erns ds - 9(0)] F,(pn p )  F:(p)  p dp 
n=lNoPn 4 - ~ n  -m PI 

(4.14) 

(4.15) 

( 4 . 1 6 ~ )  

is a measure of the energy exchange between the wavemaker and the cross-wave, and 

is a measure of the self-interaction of the cross-wave. We numerically evaluate the 
coefficient r,, (4.16a), in Appendix C (see figure 6, table 2) for a particular 
wavemaker (C2). 
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5. Evolution equations 

independent variations of p and q ) ,  we obtain the evolution equations 
Invoking Hamilton’s principle (that L d7 be stationary with respect to 

and 

which may be reduced to I (5.1) through the resealing 

(5.1 a )  

(5.1b) 

(5.2a, b )  

where we have assumed f 2  > 0. We incorporate linear damping by introducing 
a ( p , q )  on the left-hand sides of (5 . la ,  b ) ,  where 

a = a/€, (5.3) 

(5 .44  

and Q = -aq+Tl  q+ [p+ f 2 ( p 2 +  q 2 ) ] p .  (5.4b) 

For a < f , ,  the fixed points of (5.4), which correspond to harmonic motions 
(li = Q = 0 ) ,  are 

p = q = o ,  (5.5) 

and 6 is the ratio of actual to critical damping (cf. I (5.7)), and obtain 

P = -ap--T, P -  rP+r2(P2 + q”1 q, 

p + i q = + r ~ e x p [ i ( ~ ~ - - ) l ( y - p ) ~  (p<  y ) ,  ( 5 . 6 ~ )  
p + i q  = f r ; texp[ i (~n++)]  ( -y-p) i  (p < - y ) ,  (5.6b) 

where ( 5 . 6 ~ )  

and y = (r;-a2)i. (5 .6d)  

The linear stability analysis (cf. I $ 5 )  of these fixed points reveals that axisymmetric 
motions corresponding to (5.5) are stable/unstable if ,P 3 y2 and that finite 
amplitude cross-waves corresponding to (5.6alb) are stable/unstable. Hence, if 
p > y ,  axisymmetric motions are stable ; if - y < ,8 < y ,  non-axisymmetric motions 
are stable; if p < - y ,  either axisymmetric or non-axisymmetric motions are 
realizable depending upon the initial conditions. If a > f , ,  the only fixed point is 
p = q = 0, which is stable. 

We remark that (5.1) are isomorphic to the equations governing Faraday 
resonance of surface waves in a basin subjected to  vertical excitation (Miles 1984a, 
013-5). 

6. Resonant forcing of the radial cross-wave and the directly forced wave 

according to  
We now assume that the forcing frequency, 2w, approximates both 2wVm and won 
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where ,un is fixed by (3.9a), and choose an expansion of the form 

(6.2a, b)  

where 
$ f J 1  = Re [{q1(7) - ip1(7))  e-i"t] F,(p) cos vB eg, 

C1 = Re [(p1(7) + iq1(7)) e+"]F,(p) cos vB, 

( 6 . 3 ~ )  

(6.3b) 

represent the cross-wave, 

$2 = Re [ { ~ 2 ( 7 )  -ip2(7)) e-2iwtI Fo(yn P )  e n E ,  

5 2  = Re [ 2 { ~ 2 ( 7 )  + i~2(7)) e-2iwtIllib(pnp), 

(6.4a) 

(6.4b) 

represent the directly forced wave and 

7 = &wt. (6.5) 

Proceeding as in $4, and replacing p n  by 4 except in ,8, ( j  = 1,2), we obtain the 
average Lagrangian 

( 6 . 6 ~ )  

where F 0 ( 4 p ) F 3 p ) p d p ,  R = - f(s)e4'dds 
2xN, -m 

(6.7a, b )  

are a coupling coefficient and a measure of the energy transfer from the wavemaker 
to the directly forced wave. 

Invoking Hamilton's principle and adding linear damping, we obtain the evolution 
equations, 

Pl = -a1 Pl - P 1  P 1 +  C(P1 q 2  -P2 q 1 L  ( 6 . 8 ~ )  

4 1  = -a1 Q1 + P 1  Pl -C(P1 P2 + ( I 1  q 2 ) l  (6.8b) 

P 2  = -a ,P , -P2Qz+CPlQl+R,  ( 6 . 8 ~ )  

4 2  = -a2q2+P2P2-iC(P,2-Q,2). ( 6 . 8 4  

Resealing according to 

A P n  * C 
7 = R-Y,  P, = R,  a, = 2, (&d,) = E ( p j , q j )  ( j  = 1,2), (6.9a-d) 

and dropping the hats, we obtain 

Pl = - a1 Pl - P 1  Q1 +P l  Q Z  - Q 1  P,, 
4 1  = -a1 Q1 +PI P1- Pl P2-% Q z ,  

P 2  = -"2P2-P2Q,+Plq1+1~ 

4 2  = -a2q,+P2P2-i(P;-Q,2) ,  

(6.10 a )  

(6.10b) 

( 6 . 1 0 ~ )  

(6.10d) 

which may be transformed to the equations that govern two quadratically coupled 
oscillators (Miles 1984 b, Appendix B) by a scale transformation followed by a 
canonical transformation similar to (7.7) below. 
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6.1. Fixed points 
Setting the time derivatives in (6.10) equal to zero, we obtain the fixed points. We 
denote the solution 

(6.1 1 a-c) 

which corresponds to  the directly forced wave, by Po. We note that in the inviscid 
limit (al = a2 = 0 ) ,  q2 + co as P2 + 0. 

The fixed points that correspond to a combination of the cross-wave and the 
directly forced wave are 

p;  = E l + P ,  4; = El-P,  (6.12a, b) 

(6.12c, d )  

where p = M-&) = E l ( ~ l P 2 + a 2 P l ) ,  (6.13~) 

Q = Plql = E,(PlP2-al~,-El), (6.13b) 

and El = +@;+Q;)  = P 1 P 2 - ~ 1 ~ , + ~ ~ - ~ ~ 1 P 2 + ~ 2 ~ 1 ~ 2 1 ~ ,  (6.14~) 

E2 = pi+qi  = at+P; (6.14b) 

are the non-dimensional energies. We denote the fixed point that  corresponds to the 
upperllower choice of sign in (6.14~) by P*. 

1 1 
P2 = -(Plp-al&), Q2 = E , ( ~ ' P + P 1 Q ) ,  

El 

The stability of the fixed points is determined by 

1 % - Q 2  Pl+P2 41 -P11 

-P1 8 2  P 2  q1 I I -Q1 

-P1+P2 S l + Q 2  Pl D(s)  = (6.15~) 

for Po, which therefore is stablelunstable for 

1 >< @;+P:)(~i+EO. 
Turning to  the P+, (6.12), we obtain 

(6.17) 

D(s) = s 4 + 2 ( a 1 + a 2 ) s 3 + [ a ~ + / 3 ~ + 4 ( E 1 + a l a 2 ) ] s 2  

+[2a~(~~+fl)+4El(~l+a2)]~+4El(El+~la2-~lP,) = 0. (6.18) 

Since D(0) 3 0 for P+/P-, we conclude that P- is always unstable. 
The necessary and sufficient conditions for the stability of P+ are 

ai+pi+4(E1+or1a2) > 0,  2a1(a~+/3~)+4E,(a1+a2) > 0, (6.19a, b) 

(6.19~) 
Equations (6.19a, b)  are always satisfied. A necessary condition for (6.19~) to be 
violated is PlP2 c 0; then h may vanish and Hopf bifurcations may occur. 
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FIGURE 1 .  The dimensionless energy E (6.20) at the fixed points Po (6.11) and P* (6.14) versus 
the tuning parameter /3, with A = 0 (8, = tBz  = /3), a, = as = a and (a) a = 0.5, ( b )  a = 0.75, and 
(c) a = 1.1. The solid/dashed portions of the curves comprise stable/unstable equilibrium points. 
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FIGURE 2. The Hopf bifurcation points for A = - 11-3; the upper and lower Hopf bifurcations 
coalesce at /I,, = Phu = 0.3811.32 for a = 0.20/0.43. 

6.2. Resonance curves 
We consider the resonance described by PI = +(P, - A )  = p on the simplifying 
assumption that a, = a2 = u in (6.10). The bifurcation diagrams are presented in the 
form of resonance curves : total dimensionless energy, 

(6.20) 

a t  the fixed points Po (6.11) and P+ (6.14) versus the tuning parameter p, with a and 
A as family parameters. 

If d = 0, the analysis follows that of Sethna (1965) and Miles (1984b). Then, (6.19) 
are satisfied, P+ is always stable, and three distinct regions in u space exist in which 
the resonance curves exhibit qualitatively different characters. 

If p” = -$a2+i(9u4+ 16)i = E ,  (6.21) 

no cross-wave is excited (El = p ,  = q1 = 0 ) ,  symmetry-breaking bifurcations (at 
which axisymmetric solutions bifurcate to non-axisymmetric solutions) occur, and 
the condition for the stability of Po reduces to  I/?! > Ip0l. 

If (6.22) 

turning-point bifurcations occur at which P+ exchanges stability with P-. Thus for 
0 < a c ($, all of these bifurcation points exist (figure l a ) .  For (g): < a < 1, p ,  and 
P- are inadmissible (figure 1 b) .  If u > 1,  Po is admissible and parametric excitation 
of the cross-wave is impossible; the resonance curves are those of a damped, 
resonantly forced, linear oscillator (figure 1 c). 

For A + 0, the reflection symmetry of the resonance curves about /3 = 0 is broken 
and Hopf bifurcations may occur. We consider A < 0 in the following; A + - A  
corresponds to p+-B, We define phllU to  be the smaller/larger value of p at which 
h ( 6 . 1 9 ~ )  vanishes. Figure 2 presents phllU versus a for A = - 1/ - 3 ; at a = 0.20/0.43, 
the upper and lower Hopf-bifurcation points coalesce a t  Ph, = phu = 0.38/1.32. 
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FIGURE 3. The dimensionless energy E (6.20) at the fixed points Po (6.11) and P* (6.14) versus the 
tuning parameter j?, with A = - 1 (B, = t[B, - A ]  = j? ) ,  a1 = a, = a and (a) a = 0.1 (the turning- 
point bifurcations lie off the scale of the plot), ( b )  a = 0.65, (e) a = 0.75, and (d) a = 0.95. The 
solidIdashed portions of the curves comprise stable/unstable equilibrium points. 

The symmetry-breaking bifurcation point, Po, now is determined by 

4fl+ 4Ap: + (5aZ + A 2 )  f i  + 4a2Ap,  + a4 + A2a2 - 1 = 0. 

There may be 0 4  real roots depending upon the values of A and a. 

(6 .23 )  

The turning-point bifurcations, (6 .22 ) ,  generalize to 

(6 .24)  
1 
3a 

p = - + A * - .  
C* 

The resonance curves for A = - 1 are presented in figure 3 for four values of a. In 
contrast to A = 0, we find intervals in p (phi < p < ph,) for which no stable stationary 
solutions exist (cf. figure 3a) .  
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0 
B 

FIGURE 4. Resonance curves for A = -3  and a = 0.1 (see caption of figure 3). 

The resonance curves for a = 0.1 and A = - 3 are presented in figure 4, where four 
symmetry- breaking bifurcations occur. 

6.3. Numerical results 
Numerical integrations of (6.10) were performed using an Adams method. These runs 
typically were made for a total time T = 2'O, although near PhU, some were made for 
T = 2'l. The points for which 0 < 7 < 29 were removed from the time series of the 
total dimensionless energy E (6,20) in order to  eliminate transient behaviour, after 
which the mean was removed. The power spectra of the resultant N-point time series 
of E were determined through a fast-Fourier-transform program according to 

(6.25) 

where f k  = k/T and 7, = n a  are the discrete dimensionless frequency and time, d̂  is 
the increment of 7 ,  T = N i  is the length of the run, and 

~ ( 7 )  = ($)i[l -COS (2~7/T)]  (6.26) 

is the normalized window function. Numerical noise was below P = 10-lo. The 
window function (6.26) introduced a small d.c.-component in the power spectra 
which was eliminated from figure 5 by omitting the first two ( k  = 0 , l )  terms. We 
note that f k  in (6.25) is a scaled dimensionless frequency ; the actual frequency of the 
slow modulations is dwfk .  

The parametric domain of' principal interest for the numerical integrations is 
Phl < P < PhU, in which no stable fixed points exist. Runs were made for a = 0.1, and 
A = -1 ,  0.250 < /3 <0.500 (P,,,, = 0.272/0.484), and A = -3, 1.000 < /3 < 1.550 
(Phi,, = 1.072/1.495). Initial conditions typically were ( p l , q , , p 2 ,  q 2 )  = (0,1,0,0) ; 
however, other values were explored. 

For A = - 1 and 0.250 < /3 < 0.272, the numerical runs spiralled into the stable 
fixed point P, for several choices of initial conditions. I n  contrast, for A = -3  and 
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FIGURE 5 (a, b ) .  For caption see next page. 

1.055 < /3 c 1.072, the numerical runs tended to either simple limit cycles or P+, 
depending upon the initial conditions (for /3 = 1.000, the numerical runs terminated 
on Po, see figure 4). This suggests, although we have not proved, that the lower Hopf 
bifurcation changes from super- to subcritical as A is decreased. For both values of 
A ,  increasing /3 above phl yielded simple limit cycles that subsequently underwent 
period-doubling cascades to chaos. Figure 5 presents this transition for A = - 1 .  
Simple limit cycles were obtained for /3 = 0.272, 0.280, 0.300, . . . ,0.360, 0.380 (figure 
5 a ) ,  period doubling for /3= 0.390, 0.395 (figure 5b),  period quadrupling for 
/3 = 0.396 (figure 5 c ) ,  and chaotic trajectories for /3 = 0.397, 0.400, 0.420,. . . ,0.460, 
0.480 (figure 5d) .  

For both values of A and /3 > phu, the numerical integrations spiralled into P+. No 
simple limit cycles or period-doubling cascades were resolved as p was decreased 
through phu ; chaotic trajectories were obtained for /3 = 0.48311.494 for A = - 11 - 3 
respectively. 
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FIQURE 5. E l - E ,  trajectories and power spectra [ P ( f )  = logl,P us. f = f k ]  for a = 0.1 and (a) 
p = 0.300, ( b )  p = 0.395, (c) /3 = 0.396, and (d )  p = 0.400. The E l - E ,  transients and the zero- 
frequency component of the power spectrum have been omitted. f is the scaled dimensionless 
frequency (see text). 

7. 2: 1 internal resonance; 2w w 2wvm x wZvn 

according to 
We now assume that the forcing frequency, 2w, approximates both 2wum and wZvn 

where y n  is fixed by (3 .9b) ,  and choose an expansion of the form 

(7 .2a,  b )  
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where (g51,c1) are given by (6.3), (g50,co) are given by (3.10), (g52,c2) are given by 

g52 = Re [{qz(7) - ipz(7)} e-2i'ot] Fz,(y, p )  cos 2 ~ 8 e Y n 6 ,  ( 7 . 3 ~ )  

Cz = Re [2{pZ(7) + iqz(T)} e-2iwt]Fz,(y, p )  cos 2v0, (7.3b) 

and T is given by (3.3e) in (6.3) and (7.3). Proceeding as in 994 and 6, we obtain the 

and rl is given by ( 4 . 1 6 ~ ) .  
Invoking Hamilton's principle, we obtain 

P ,  = -P1 Q1- r* Pl + C*(P142-!l1 PZL 
Q, = P1 PI + r* Q1 -C*(P1 Pz +91 a z L  
P 2  = -Pzaz+c*PlQ1, 
Qz = PzPz-SC* @ ; - a ; ) .  

The canonical transformation 

- c* 
carries (7.4) over to 

( 7 . 4 ~ )  

(7.4b) 

( 7 . 5 ~ )  

(7.5b) 

( 7 . 6 ~ )  

(7.63) 

( 7 . 6 ~ )  

(7.6d) 

( 7.7 u-c ) 

(7.7d, e )  

( 7 . 8 ~ )  

(7.8b) 

which is equivalent to 2 : 1 internal resonance for the Faraday problem (Miles 1984a, 
96) with /Ij replaced by P3/ r *  therein. Linear damping may be incorporated by 
introducing (alp1, alql, a2,p2, azqz) on the left-hand sides of ( 1 2 . 6 ~ 4 ) .  These 
equations have been shown (Gu & Sethna 1987) to admit chaotic solutions for non- 
zero values of A ,  where A = /?z-2P, (cf. $6)). 
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Appendix A. Three-dimensional cross-waves in a rectangular tank 
Following I and 531-5, we examine the excitation of gravity waves in a short, 

rectangular tank of length 1, breadth b and depth d by the wavemaker displacement 

We obtain the simpler, two-dimensional result I (3.5), wherein q511 is a pure function 
of time and represents a spatially uniform pressure oscillating at the wavemaker 
frequency. by setting K ,  = 0 in (A 6) and allowing for the different normalizations of 
the first-order cross-wave (the present ( p ,  q )  is replaced by 2. 2@, q )  in I). We remark 
that, in contrast to the radial cross-wave problem (cf. (3.5)). internal resonance 
between a rectangular cross-wave and its second harmonic cannot occur, by virtue 
of which (o,,. ell) = O(1) for all K,.K,. 

when w approximates a natural frequency of a three-dimensional cross-wave, 

Garrett (19’70), Miles (1988) and Tsai et al. (1990) have examined two-dimensional 
(m = 0) cross-waves. 

We choose an expansion of the form (3.1) where the first-order cross-wave is given 
bs 

J .  M. Becker and J .  W.  Mile8 

are dimensionless coordinates and horizontal wavenumbers. and 7 is given by (3 .3e) .  
The second-order cross-wave ($,,, cl:,,) is given by 
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The directly forced wave is given by 

and 

where urn, = m'x/Kl, and the Gum,([), m' = 0,1, . . . , co, are given in Appendix B. We 
anticipate that the only terms in the series (A 7) needed here are given by (3.11) and 

@:am(o) = @"am(o) + 2f( 0). (A 8 4  

Following $4, we calculate the average Lagrangian, which may be reduced to 
integrals over the rest position of the free surface and the wavemaker (cf. (4.6)). In  
the calculation of the free-surface integral, Fl is given by (4.8) with o,, and k,, 
defined by (A 2), (4.10) is replaced by 

= ={ f(s) ds-f(0) + L r  2 K 2  f(s) ezKisds-f(0)}, (A 9) 
2Kl 2-Kl -m 

where we have invoked (3.11) and (A 8), and (4.11) is replaced by 

(FIJ = [@;:)'I { 7 -8 [A+*] 2-K2 2-Kl -6K: K;} . 

Comparing (4.10) with (A 9), we note that, for both radial cross-waves and three- 
dimensional cross-waves in a rectangular tank, energy is transferred from the 
wavemaker to the cross-wave through the (spatial) mean motion of the free surface 
and through spatial coupling between the cross-wave and the directly forced wave. 
For radial cross-waves, this spatial coupling is represented by an infinite sum over 
the axisymmetric free modes in an annulus, whereas for three-dimensional cross- 
waves in a rectangular tank, it occurs only between the cross-wave and the 2m- 
Fourier-cosine component of the directly forced wave. This spatial coupling does not 
occur for two-dimensional (m = 0) cross-waves in a rectangular tank. We emphasize, 
however, that owing to the spatial integrations, the two-dimensional limit (m + 0 )  of 
( L )  is not uniformly valid. 

For the wavemaker integral (4.13) is replaced by 

Combining the free surface and wavemaker integrals, we obtain 
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where Lo = +(Fo + W,) is the Lagrangian of the directly forced wave, H is given by 
(4.15) with (4.16) replaced by 

and r=-{ - 3 2 ~ 1  1 7 - 8  [ - 2--x2 K': +A] 2 - K ,  - 6K:K:). (A 13b) 

The evolution equations that govern ( p ,  q )  for three-dimensional cross-waves in a 
rectangular tank are given by (5.1) with the changes in the coefficients indicated 
above. The stability analysis of 55 also carries over. 

and the FO(pL,p) ,  ( n  = 1 , 2 , .  . .) are given by ( 3 . 7 ~ ) .  Applying (B 4a)  to (B 1)-(B 3), we 
obtain 

Ppntt-~iPpn = 2PlFo(Pn ~ l ) f ( t ) ,  (B 5) 

-wp,+p,,< = 0 (6 = O ) ,  p,,,+o ('$4 -a), (B 6a, b )  

where we have eliminated Co from (B 2 a ,  b)  in favour of $o and separated out the 
e-2iwt time dependence. 

Solving (B 5 )  and (B 6)  and invoking (B 4b), we obtain 
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For cross-waves in a rectangular tank, the directly forced wave satisfies (B 1) and 
(B 2) with (B 3) replaced by 

We define the finite-cosine transform, 

i o w  

where 
m'7c 

u,. = -. 
Kt! 

The equations that correspond to (B 5 )  and (B 6) are 

- U k ,  @um.(tJ = 2 m  

- 4@um.(E) + = 0 ( E  = 01, + 0 ( k  4 - ). 

Solving (B 11) and (B 12) and invoking (B lob), we obtain 

where Go(C) is given by (B 8a)  and @,,,,(g) is given by (B 8 b ) .  

Appendix C. Experiments 

By Janet M .  Becker and Diane M .  Henderson? 

We conducted preliminary experiments on standing radial cross-waves by 
subjecting a floating ping-pong ball ( r l  = 1.89 cm) to vertical oscillation in a Pyrex 
beaker (r2 = 4.25 cm) that contained a distilled water/Kodak Photo Flo solution. 
The static surface tension at the fluid-air interface was T = 42.3 dyn/cm. Because of 
the small scale of these experiments, surface tension must be incorporated in the 
deep-water dispersion relationship according to 

w2 = gK+TTK3, w = 2Xf, (C l a )  

t Institute of Geophysics and Planetary Physics, University of California, La Jolla, CA 92093, 
USA. 
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Expt no. f, (Hz) fi (Hz) a, (mm) K (cm-') v 

1 
2 
3 
4a 
46 
5 
6 
7 
8 
9 

10a 
106 
11 
12 
13a 
136 
14a 
146 
15 
16 
17 
18 

12.019 
12.520 
13.021 
13.516 
13.516 
14.001 
14.521 
15.024 
15.501 
16.009 
16.552 
16.552 
17.058 
17.517 
18.001 
18.001 
18.513 
18.513 
19.055 
19.531 
20.032 
25.040 

6.010 
6.260 
6.510 
6.758 
6.758 
7.005 
7.261 
7.512 
7.751 
8.005 
8.276 
8.276 
8.529 
8.758 
9.006 
9.006 
9.257 
9.257 
9.527 
9.766 

10.016 
12.520 

0.94 
0.94 
0.88 
0.88 
0.95 
0.88 
0.88 
0.81 
0.82 
0.81 
0.81 
0.90 
0.83 
0.83 
0.82 
0.84 
0.83 
0.84 
0.83 
0.84 
0.82 
0.88 

1.35 
1.45 
1.55 
1.65 
1.65 
1.74 
1.85 
1.95 
2.05 
2.15 
2.26 
2.26 
2.36 
2.45 
2.55 
2.55 
2.65 
2.65 
2.75 
2.85 
2.94 
3.85 

1 
1 
2 
1 
2 
3 
3 
4 

4-5' 
5 
b 

b 

5 
5 
b 

b 

e 

6 

7-8" 
7-8" 

b 

a Uncertain azimuthal mode number (no consensus reached between observers). 
Irregular wavefield, no single cross-wave mode observed. 
Steady superposition of a v = 3 mode and a v = 6 mode. 

TABLE 1. Experiments on standing cross-waves 

and W E ,  = gk,,  + Tkz, 

We note that Kd = O(10) so that the deep-water assumption is justified. The 
electronics that drove the ping-pong ball and measured the wavemaker and wave- 
field amplitudes and frequencies are described in Henderson & Miles (1989). 

The experiments were conducted as follows. We fixed the driving frequency and 
increased the wavemaker stroke until a finite-amplitude radial cross-wave was 
0bserved.t We measured an in situ time-series of the surface displacement and 
determined its frequency content with an energy spectrum. We then computed the 
radial wavenumber K of the cross-wave from (C la).  We determined the azimuthal 
wavenumber u of the cross-wave by independently counting the number of 
wavelengths around the ball. Table 1 presents the measured wavemaker frequency 
fa, cross-wave frequency fi, wavemaker amplitude a,, and the radial and azimuthal 
wavenumbers of the cross-wave. We observed a single cross-wave mode for driving 
frequencies in 12 Hz < fo < 16 Hz ; it was typically steady, but sometimes rotated 
slowly around the ball a t  the higher frequencies. The surface displacement was 
irregular for some values of fo > 16 Hz. This spatial disorder may be due to 2 :  1 
resonances, as described in $56 and 7, or to mode competition, (cf. Ciliberto & Gollub 
1985), as the natural frequencies for difFerent cross-wave modes become closely 
spaced as f is increased (see figure 7). We observed a steady superposition of a 
u = 3 mode and u = 6 mode for f0 = 18.513 Hz. Further experiments are needed to 
determine whether this is a 1 : 1 internal resonance between a (3,2) and a (6,l)  mode 

t We did not attempt to measure the wavemaker amplitude at which the cross-wave is neutrally 
stable. 
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U , W L  k,, r, v,m k,, rl 
1,0 0.33 a 6,O 1.76 0.22 
1 , l  1.41 0.31 6, 1 2.68 0.46 
1,2 2.70 0.37 6,2 3.50 0.53 
1,3 4.02 0.40 6,3 4.56 0.47 

2,O 0.65 0.24 7 , O  2.02 0.19 
2 , l  1.56 0.37 7, 1 2.99 0.33 
2,2 2.78 0.39 7,2 3.77 0.56 
2,3 4.06 0.40 7,3 4.75 0.50 

3,O 0.95 0.21 8,O 2.27 0.20 
3 , l  1.79 0.45 8, 1 3.29 0.37 
3,2 2.89 0.41 8,2 4.06 0.57 
3,3 4.15 0.41 8,3 4.96 0.52 

4,O 1.23 0.24 9,0 2.52 0.21 
4, l  2.07 0.49 9, 1 3.58 0.33 
4,2 3.05 0.46 9,2 4.32 0.56 
4,3 4.25 0.43 9 ,3  5.20 0.56 

5,O 1.50 0.22 
5 , l  2.37 0.49 
5,2 3.26 0.49 
5,3 4.39 0.45 

(I p1 = 4.10 see $6. 

TABLE 2. Numerical values of rl for rl = 1.89 and r2 = 4.25 

or a 2 : 1 internal resonance between a (3,2) and a (6,4) mode for which the theory 
of $ 7  applies. We note that in the resonance conditions (7.1), w/w,, are defined by 
(C l a ,  b) .  

The theory of $51-7 is for a cylindrical, rather than a spherical, wavemaker; 
accordingly, we attempt only a qualitative comparison between theory and 
experiment. We compute the stability of the axisymmetric directly forced wave and 
the cross-wave for the experiments in which we observed a single cross-wave mode. 
To this end, we numerically evaluate the interaction coefficients r, and r,. As we are 
not attempting to compare the predicted wave-field amplitudes with the ex- 
perimental data, only the sign of r, is needed. We compute r, from (4.16b) for 
m = 1, v = 1-6. The two infinite sums in (4.16b) typically converge to three places 
after the first few terms although fifteen terms were computed, and r, is always 
positive for these cases; hence, the stability analysis of $5 carries over directly. 

We compute rl from ( 4 . 1 6 ~ )  by choosing a simple analytic function for the 
wavemaker shape : 

we note that f’(0) = 0 and f(5) $0, 6 $ - co . Table 2 presents rl for the f(6) given by 
(C 2) with a, = bw = 1 and 0 < m < 3, 1 < v < 9. We note that for the ( 1 , O )  mode, 
,ul = 4.10; hence, the single-mode theory is invalid (cf. $6). The first term in (4.16a), 
which represents the coupling between the cross-wave and the spatially averaged 
motion of the directly forced wave, is the dominant contribution to r,. For a fixed 
u, this term increases with increasing m. The second term in (4.16a), the infinite sum, 
which represents coupling between the cross-wave and the axisymmetric free modes 
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FIQURE 6. r, vs. kvmr, /v  where r, is given by (4.16a) andf(E;) is given by (C 2) with 
a, = b, = 1. 

(of zero spatial mean) in an annulus, typically converged to two places after a few 
terms, although between ten and twenty terms were computed. For v = 1 and 3 < 
v < 8, the radial mode number dependence of this sum is such that the maximum of 
r, and this sum coincide. The last term (4.16a), which arises from nonlinearity in the 
wavemaker boundary condition (2.4), is typically small and weakly dependent upon 
radial mode number as it crosses zero from below as m is increased. Figure 6 presents 
r, versus k,,rl /v for v = 1-9. We note that for 3 < v < 9, rl exhibits a maximum 
near k,, x v / r l ,  the turning point of Bessel's equation (i.e. when the wavemaker is 
near the turning point of the cross-wave radial profile ( 3 . 4 ~ ) ) .  

The boundary above which axisymmetric motions are unstable with respect to 
cross-wave perturbations is given by (cf. $5)  

In addition, a finite-amplitude cross-wave is stable if w < w,, or if w > w,, and 
a > a,. We measured the dissipation parameter 6 = 0.035 for experiment 6 only, and 
that value is used in the computation (C 3) for all the experiments. Figure 7 presents 
a, versus w/2n as given by (C 3). Superimposed on these curves are the (fi, a,,) 
coordinates of the experiments. The theory is in agreement with the experiments in 
predicting that the observed cross-wave is stable except for experiment 4a, for which 
the cross-wave is unstable. For the majority of the experiments for which the cross- 
wave is stable (experiments 2, 3, 4b-7, the ( 4 , l )  mode of S t ,  9, 11,  12, 15, the ( 7 , l )  
mode of 1 7 t  and 18), the axisymmetric, directly forced wave is unstable. For 

t As noted in table 1, the azimuthal wavenumber in this experiment is uncertain. 
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experiments 1 ,  the ( 5 , l )  mode of 8t,  and the (8 , l )  mode of 17t,  both the 
axisymmetric wave and the cross-wave are stable, and either could be realized 
depending upon the initial conditions. 

We conclude by comparing the present experimental data for standing radial 
cross-waves with those of Tatsuno et al. (1969) for progressive radial cross-waves. 
Figure 8(a,  b )  presents /crl versus v for the present experimental data and those of 
Tatsuno et al. (1969). For standing radial cross-waves, the observed modes straddle 
the 45" line consistent with the theoretical prediction that the energy exchange 
coefficient r, is maximum for that mode near the turning point of Bessel's equati0n.t 
For progressive radial cross-waves, however, all of the data lie on or below the 45" 
line. As r2 t 00, the discrete modal spectrum determined by (1.3b) becomes 
continuous. This suggests that, without the outer cylinder to contain the wcak 
energy input from the wavemaker, progressive radial cross-waves adjust their radial 
wavenumber to reduce their radiation damping by a mechanism similar to that 
observed by Longuet-Higgins (1967). For every experiment in figure 8 ( b )  the 
cylinder radius, r1 is less than (or approximately equal to for v = 2) the turning radius 
of Bessel's equation, V / K ;  hence, the amplitude of the progressive radial cross-wave 
experiences exponential decay prior to radiating its energy to infinity. A theoretical 
analysis of progressive radial cross-waves is in progress. 

t We note that when experiment 18 is excluded, a line fitted to the experimental data in figure 
8 (a) is systematically tilted with respect to the 45" line. This behaviour is reproduced in the graph 
of k,,rl versus v ;  hence, for these single-mode experiments, the (v, 1) mode is excited. 

FIGURE 7. The marginal stability curves a, vs. w / 2 n  as given by (C 3). The mode number (v, m )  for 
each curve is indicated. The (f,,u,) coordinates of the experiments are superimposed on these 
curves. Experiment 18 lies off the scale of the figure. 
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6 8 
0 2 4 Y  

FIQURE 8. /cr1 vs. v for ( a )  the present experiments on standing radial cross-waves (rl = 1.89 cm, 
r, = 4.25 cm) and (b) the experiments of Tatsuno et al. (1969) for progressive radial cross-waves 
( r ,  7 29 cm; 0,  rl = 1.50 cm; 0, rl = 2.00 cm; +, rl = 2.50 cm; *, rl = 2.99 cm). Horizontal bars 
indicate uncertainty in the azimuthal wavenumber v. 
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